RECOGNISING ACHIEVEMENT

ADVANCED GCE

Core Mathematics 3
FRIDAY 11 JANUARY 2008

Morning
Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages)
List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1 Functions f and g are defined for all real values of x by

$$
\mathrm{f}(x)=x^{3}+4 \quad \text { and } \quad \mathrm{g}(x)=2 x-5
$$

Evaluate
(i) $\mathrm{fg}(1)$,
(ii) $\mathrm{f}^{-1}(12)$.

2 The sequence defined by

$$
x_{1}=3, \quad x_{n+1}=\sqrt[3]{31-\frac{5}{2} x_{n}}
$$

converges to the number α.
(i) Find the value of α correct to 3 decimal places, showing the result of each iteration.
(ii) Find an equation of the form $a x^{3}+b x+c=0$, where a, b and c are integers, which has α as a root.

3 (a) Solve, for $0^{\circ}<\alpha<180^{\circ}$, the equation $\sec \frac{1}{2} \alpha=4$.
(b) Solve, for $0^{\circ}<\beta<180^{\circ}$, the equation $\tan \beta=7 \cot \beta$.

4 Earth is being added to a pile so that, when the height of the pile is h metres, its volume is V cubic metres, where

$$
V=\left(h^{6}+16\right)^{\frac{1}{2}}-4
$$

(i) Find the value of $\frac{\mathrm{d} V}{\mathrm{~d} h}$ when $h=2$.
(ii) The volume of the pile is increasing at a constant rate of 8 cubic metres per hour. Find the rate, in metres per hour, at which the height of the pile is increasing at the instant when $h=2$. Give your answer correct to 2 significant figures.

5 (a) Find $\int(3 x+7)^{9} \mathrm{~d} x$.
(b)

The diagram shows the curve $y=\frac{1}{2 \sqrt{x}}$. The shaded region is bounded by the curve and the lines $x=3, x=6$ and $y=0$. The shaded region is rotated completely about the x-axis. Find the exact volume of the solid produced, simplifying your answer.

The diagram shows the graph of $y=-\sin ^{-1}(x-1)$.
(i) Give details of the pair of geometrical transformations which transforms the graph of $y=-\sin ^{-1}(x-1)$ to the graph of $y=\sin ^{-1} x$.
(ii) Sketch the graph of $y=\left|-\sin ^{-1}(x-1)\right|$.
(iii) Find the exact solutions of the equation $\left|-\sin ^{-1}(x-1)\right|=\frac{1}{3} \pi$.

7 A curve has equation $y=\frac{x \mathrm{e}^{2 x}}{x+k}$, where k is a non-zero constant.
(i) Differentiate $x \mathrm{e}^{2 x}$, and show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{e}^{2 x}\left(2 x^{2}+2 k x+k\right)}{(x+k)^{2}}$.
(ii) Given that the curve has exactly one stationary point, find the value of k, and determine the exact coordinates of the stationary point.

8 The definite integral I is defined by

$$
I=\int_{0}^{6} 2^{x} \mathrm{~d} x .
$$

(i) Use Simpson's rule with 6 strips to find an approximate value of I.
(ii) By first writing 2^{x} in the form $\mathrm{e}^{k x}$, where the constant k is to be determined, find the exact value of I.
(iii) Use the answers to parts (i) and (ii) to deduce that $\ln 2 \approx \frac{9}{13}$.

9 (i) Use the identity for $\cos (A+B)$ to prove that

$$
\begin{equation*}
4 \cos \left(\theta+60^{\circ}\right) \cos \left(\theta+30^{\circ}\right) \equiv \sqrt{3}-2 \sin 2 \theta . \tag{4}
\end{equation*}
$$

(ii) Hence find the exact value of $4 \cos 82.5^{\circ} \cos 52.5^{\circ}$.
(iii) Solve, for $0^{\circ}<\theta<90^{\circ}$, the equation $4 \cos \left(\theta+60^{\circ}\right) \cos \left(\theta+30^{\circ}\right)=1$.
(iv) Given that there are no values of θ which satisfy the equation

$$
4 \cos \left(\theta+60^{\circ}\right) \cos \left(\theta+30^{\circ}\right)=k
$$

determine the set of values of the constant k.

